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Abstract
In fighting games, individual players of the same skill level often exhibit distinct strategies from one another through their
gameplay. Despite this, the majority of AI agents for fighting games have only a single strategy for each “level” of difficulty.
To make AI opponents more human-like, we’d ideally like to see multiple different strategies at each level of difficulty, a
concept we refer to as “multidimensional” difficulty. In this paper, we introduce a diversity-based deep reinforcement learning
approach for generating a set of agents of similar difficulty that utilize diverse strategies. We find this approach outperforms
a baseline trained with specialized, human-authored reward functions in both diversity and performance.
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1. Introduction
Fighting games have long featured AI agents that act as
opponents for human players to play against. The major-
ity of these AI agents are created using a notion of “linear”
difficulty, meaning the only distinction between agents is
a difficulty rating in a fixed range from easy to hard. De-
spite its prevalence, this model of linear difficulty is not
well aligned with the average player’s experience play-
ing against other humans. The high amount of player
expression within fighting games allows for human play-
ers of similar skill levels to use the same mechanics in
disparate ways to uniquely challenge their opponents
[1]. For example, one player may use a character’s tools
to keep their distance and chip away at an opponent,
while another may use the same tools to aggressively ap-
proach the opponent in close quarters. This disconnect
can make players feel inadequately prepared for playing
against other humans, and could cause some to drop a
game entirely.

This problem could be mitigated through the use of
a “multidimensional” difficulty system in which agents
are distinguished by both linear difficulty and additional
qualities such as playstyle. To the best of our knowledge,
this is the first academic work to identify this research
problem. By incorporating a notion of multidimensional
difficulty, fighting games could provide players the expe-
rience of playing against multiple diverse strategies. This
could allow players to better prepare for playing against
other human players and push them to more fully explore
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the mechanics of the game.
A major challenge in attaining multidimensional dif-

ficulty is the overall design burden of creating fighting
game AI agents. Fighting games agents often require sig-
nificant hand-authoring to be effective, using rules-based
systems or Finite State Machines (FSMs) to accommodate
complex game mechanics and character interactions [2].
Due to this difficulty, some games resort to “cheating”
by reading the player’s inputs to artificially increase the
difficulty of an AI agent, further breaking parity between
human and AI opponents. There has been prior work in
alleviating this designer burden through the use of Re-
inforcement Learning (RL) techniques to autonomously
train AI agents to play fighting games [3, 4]. However,
the majority of this work has been focused solely on play-
ing the game, which is a testament to the difficulty of
developing such agents. As such, the problem of automat-
ically developing agents that exhibit diverse strategies
for fighting games has been relatively unexplored.

In this paper we focus on the task of training a group of
agents of similar difficulty that utilize diverse strategies
from one another. Ideally, these agents would provide a
more complete, robust gameplay experience for players
while providing a suitable challenge.

Towards this goal, we propose Brisket, a diversity-
based deep RL approach for learning a set of equally
skilled, diverse strategies inspired by [5]’s Diversity
is All You Need (DIAYN). We implemented Brisket in
FightingICE, a fighting game research platform built for
the testing and evaluation of AI agents [6]. We eval-
uated the policies learned by Brisket against a set of
“human-authored” baseline agents trained with special-
ized, human-authored reward functions, and found that
they outperformed these baseline agents in both effective-
ness and diversity. Therefore, we claim that a diversity-
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based RL approach can be an effective way to produce
enemy AI agents for fighting games with multidimen-
sional difficulty.

2. Related Work

2.1. NPC Generation
Methods of algorithmically generating NPC behaviours
and mechanics have been developed for many game do-
mains. These methods fall between automated game
playing and Procedural Content Generation (PCG), de-
fined as the generation of game content through AI or
algorithmic means [7]. The task of NPC generation is
often included in prior work through the generation of
entire games or game mechanics [8, 9]. We instead focus
on the generation of NPC behaviour with a predefined
set of mechanics.

Prior systems to generate NPC behaviour generation
have used constructive, search-based, and constraint-
based PCG techniques [10, 11]. One such system intro-
duced by [12] utilized program synthesis for the gen-
eration of unique boss behaviour with pre-defined con-
straints. These existing methods do not focus on gener-
ating a diverse population of NPCs, but rather the gen-
eration of individual NPCs. Quality-diversity search al-
gorithms exist for the generation of such populations,
and have been applied to level generation and 3D model
creation [13]. While to the best of our knowledge quality-
diversity search has not been applied to NPC generation,
this could represent an alternative approach to our prob-
lem.

2.2. Fighting Game AI
There has been a vast amount of prior work on the cre-
ation of AI agents for playing fighting games. Some prior
work focuses on utilizing hand-authored rules-based sys-
tems to create competitive agents with a high amount
of designer controllability [14]. [2] introduced one such
rules-based system that utilized dynamic scripting to
adapt an AI to a given opponent by selecting rules from
a human-authored corpus. Rules-based systems can be
specifically authored to achieve desired qualitative be-
haviour, such as in [15]’s system for creating an “affec-
tive” agent that makes decisions based on an emotional
appraisal engine. One weakness of rules-based systems
is the intensive amount of hand-authoring required by
expert designers. In comparison, our method focuses on
learning policies without direct human authoring of an
agent’s behaviour.

In recent years, Monte Carlo Tree Search (MCTS) and
RL-based fighting game agents have become more domi-
nant, with some agents defeating top rated human play-
ers [16, 4, 3]. The majority of these works focus on play-

Figure 1: A screenshot of the FightingICE platform. Health
and energy resources for each player are displayed at the top
of the screen. When an agent performs a move, a temporary
red hitbox is created. This hitbox will damage the opponent if
their hurtbox intersects with it.

ing the game as well as possible as opposed to generat-
ing novel or diverse strategies. A notable exception is
[17]’s system for incorporating human-authored NPC
“personas” into an MCTS agent’s decision making. While
this system created agents using the same architecture
that utilized distinct strategies, these strategies required
authoring in terms of their preferred actions. Our human-
authored baseline, described below, takes inspiration
from this work.

2.3. PCGRL
Procudural Content Generation via Reinforcement Learn-
ing (PCGRL) refers to the generation of game content via
the use of RL techniques [18]. Most prior PCGRL work
focuses on level generation and puzzle design [19, 20].
Our approach, Brisket, takes inspiration from DIAYN,
which in turn was inspired by prior diversity-based RL
and evolutionary methods [5, 21, 22]. The application of
diversity-based reinforcement learning to the domain of
NPC generation is novel to the best of our knowledge.
While Brisket is inspired by DIAYN, we modified the al-
gorithm in order to better suit our domain and problem.

3. FightingICE
In this section we briefly introduce FightingICE, the en-
vironment we used as a testbed for our approach Brisket.
FightingICE is an open-source research platform built for
the development and evaluation of AI agents for fighting
games [6]. We chose to use FightingICE due to the plat-
form’s support of AI development, its relative simplicity
in comparison to other fighting games, and its proven
success as a research platform [23, 24]



Figure 2: A visualization of the DQN agent architecture. The current state 𝑠 and proposed action 𝑎 are concatenated as input
and passed through a fully connected neural network, which predicts the expected reward ̂𝑟 of taking action 𝑎 in state 𝑠.

Figure 1 depicts a screenshot of a match being played
between two AI agents in FightingICE. FightingICE is a
simple 2D fighting game, where characters have access
to a variety of punches, kicks, and basic evasive maneu-
vers. Characters also have access to special moves which
consume energy, a limited resource gained from hitting
the opponent or being hit. FightingICE currently con-
tains three characters, but for simplicity we restrict our
focus to the default character ZEN, as in prior work [23].
Brisket was developed and tested on version 4.50 of the
platform.

Notably, because FightingICE was designed for the
comparison of automated game playing approaches, it
was not a trivial task to use it for NPC behaviour research.
Multiple adjustments had to be made to the platform in
order for it to function for Brisket, the most notable of
which is the removal of a 15 frame input delay. We pro-
vide the adjusted source code in a GitHub repository,
along with the implementation of Brisket in Fighting-
ICE1.

4. System Overview
In this section we discuss the technical details of Brisket,
our diversity-based deep RL approach. On a high level,
the approach involves training multiple agents concur-
rently, rewarding each agent based on their diversity
from one another according to a discriminator. We then
fine-tune these agents individually on a general reward
function with the goal of creating agents of a similar
difficulty that are diverse from one another.

We begin by discussing the formulation of the Markov
Decision Process (MDP) for our task, describing the state
and action spaces and reward function. We then detail
the architecture used by our deep Q-agents and discrimi-
nator. The Diversity-Based Learning subsection covers

1https://github.com/emily-halina/brisket

the diversity step of our training approach, outlining
the algorithm used for training our agents “without a
reward function,” and the Fine-tuning subsection covers
the fine-tuning step of our training approach.

4.1. Markov Decision Process
An MDP is defined as a state space 𝑆, action space 𝐴, and
reward function 𝑅. We ignore the transition function
as we have deterministic actions. The goal of an RL
approach is to learn a policy function 𝜋𝑅 ∶ 𝑆 → 𝐴 which
maps a given state to the optimal action to take in that
state to maximize value according to 𝑅.

There is no default state representation in FightingICE,
and so we had to design our own. Our state representa-
tion contains 143 variables, all of which are floats normal-
ized between 0 and 1. The first 14 variables contain basic
information about both players, including current health,
current energy for special moves, position, and velocity.
The following 112 variables represent the current status
of each player, which includes options such as standing,
crouching, or performing a move. This status is encoded
as a one-hot vector, with each status being associated
with a unique action. We include the remaining time in
the round as a single variable to allow for more nuanced
decision making, such as an agent becoming more ag-
gressive or defensive at the end of the round. The final
12 variables encode the relative position and hit dam-
age of the two most recent projectiles from both players.
Projectiles persist between states, continuing to move
until colliding with a player or reaching the end of their
range. We chose to include only the most recent two
projectiles in an effort to reduce the size of each state,
as it is very rare for more to be active at any given time.
When there are no projectiles or only one projectile, the
corresponding unused variables are given a placeholder
value of 0.

FightingICE’s default action representation was a good
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fit for this task, and so we can just enumerate all possible
actions for the action space of the MDP. There are 56 pos-
sible actions agents can take, including simple options
such as walking forward or punching, along with com-
plex inputs such as projectiles or special moves. These
actions were encoded as an one-hot vector of length 56.

Brisket uses two separate reward functions: the fine-
tuning function 𝑅𝑓 and the diversity-based function 𝑅𝑑.
𝑅𝑑 is defined and discussed below. 𝑅𝑓 is defined as

𝑅𝑓(𝑠, 𝑎) = 𝑇 (𝑠) ⋅ 1000 (1)

where 𝑇 (𝑠) = 1 if 𝑠 is a positive terminal state (winning
the game), 𝑇 (𝑠) = −1 if 𝑠 is a negative terminal state
(losing the game), and 𝑇 (𝑠) = 0 otherwise. We chose
not to include an existential penalty as not to invalidate
strategies that may attempt to win by time-out, as the
state representation includes the remaining time in a
round. Additional specialized reward functions used for
the development of our baseline DQN agents are defined
in the Evaluation section.

4.2. Architecture
Our approach Brisket involves the training of a fixed
number of Deep Q-Network (DQN) agents in tandem.
DQN agents utilize a neural network to approximate a
lookup table mapping a given state-action pair to the
expected value of taking a given action in that state [25].
In this subsection, we focus on the architecture used by
each DQN agent, as well as the architecture used for
the discriminator which determines the reward in the
diversity-based training step.

Figure 2 depicts a visualization of the DQN architec-
ture. The model takes in a length 143 vector representing
a state 𝑠, along with a length 56 one-hot vector represent-
ing the proposed action 𝑎 to evaluate. These vectors are
concatenated and passed through 3 fully connected lay-
ers of 128, 64, and 32 neurons respectively. Each of these
layers use rectified linear unit (ReLU) as the activation
function. Our final output layer is a single node using
the tanh activation function to represent a predicted re-
ward ̂𝑟 ∈ (−1, 1). The use of ReLU and the parameters of
our model are informed by prior work on DQN agents
for the fightingICE domain, with the notable change of
predicting a reward based on a state-action pair rather
than treating the model as a 56-class classification prob-
lem [26]. This change was to reduce the complexity of
the model’s representation, allowing the model to more
easily learn relationships between states and individual
actions.

Brisket uses a discriminator during the diversity step
in order to reward agents based on their diversity. This
discriminator takes in a state-action pair as input and
predicts the likelihood that this pair came from each of
our agents. This likelihood is then used in the reward

Algorithm 1 Diversity-based learning algorithm
Let 𝑆𝜋 be fixed set of policies, 𝐷 discriminator
for episode 𝑒 do

for round 𝑟 do
Sample 𝜋𝑟 ∼ 𝑆𝜋 to make choices during 𝑟
for timestep 𝑡 do

𝑎𝑡 ← 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦(𝜋𝑟, 𝑠𝑡)
for policy 𝜋 ∈ 𝑆𝜋 do

// calculate reward based on 𝐷
𝑟𝜋,𝑡 ← 𝑅𝑑(𝑠𝑡, 𝑎𝑡, 𝜋 , 𝐷)

end for
Step environment 𝑠𝑡+1 ← (𝑠𝑡, 𝑎𝑡)

end for
end for
Update each policy 𝜋 ∈ 𝑆𝜋 with samples from 𝑒
Update discriminator 𝐷 with samples from 𝑒

end for

function for these agents, encouraging them to take more
and more diverse actions from one another. The discrim-
inator uses the same architecture as each DQN agent,
with the only architectural change being at the output
layer. The output layer has 𝐾 nodes, where 𝐾 is the num-
ber of policies to learn, and uses the softmax activation
function in place of tanh. We chose to use the same ar-
chitecture for both the discriminator and DQN agents, as
they are modelling similar relationships between state-
action pairs and their desired output.

4.3. Diversity-based Learning
Brisket is largely inspired by DIAYN, an approach for

concurrently training a group of RL agents which are re-
warded based on a discriminator which determines how
distinct these agents are from one another [5]. Brisket
makes the major change of using state-action input for
our DQN agents and discriminator rather than just state
[5]. This change was due to our task of behaviour gener-
ation, which differs from the exploration task for which
DIAYN was originally designed.

Algorithm 1 describes the procedure for learning a set
of policies that are diverse from one another according
to a discriminator. We begin by defining 𝑆𝜋 as the fixed
set of policies to be learned, and 𝐷 as the discrimina-
tor. Each episode contains a fixed number of “rounds”
in fightingICE, which can be thought of as individual
rollouts from an initial state. For each of these rounds,
we sample a policy 𝜋𝑟 ∼ 𝑆𝜋 to “pilot” the given round.
This is done in an attempt to balance the training data for
the discriminator, as well as to allow for the possibility
of encountering states which are only feasibly reachable
through following the same policy for an entire round.
For each timestep, we select an action according to 𝜋𝑟
using 𝜖-greedy, with 𝜖 being annealed from 0.95 to 0.05
linearly across 50 episodes to ensure a high amount of



early exploration. We then calculate the reward for each
policy 𝜋 using the diversity-reward function 𝑅𝑑, defined
as

𝑅𝑑(𝑠𝑡, 𝑎𝑡, 𝜋 , 𝐷) = 𝑙𝑜𝑔𝐷(𝑠𝑡, 𝑎𝑡|𝜋) − 𝑙𝑜𝑔 1
|𝑆𝜋|

(2)

where 𝑙𝑜𝑔 is the natural logarithm, and 𝐷(𝑠𝑡, 𝑎𝑡|𝜋) is the
discriminator 𝐷’s prediction that the state-action pair
(𝑠𝑡, 𝑎𝑡) came from policy 𝜋. We then step the environ-
ment forward using 𝑎𝑡, collecting training samples for
the DQN agents and discriminator. Each of the rounds
are played against a “random agent” which selects actions
uniformly at random. This was to allow for the policies
to see as many unique states as possible. At the end of
each episode, we update each policy based on their re-
spective samples, then update the discriminator based on
the true pilot for each state-action pair. We found experi-
mentally that we did not need to use a fixed replay buffer
in this environment, as supported by prior work which
showed large replay buffers are not universally beneficial
[27]. We perform an 80-10-10 train-val-test split when
training the discriminator, recording the validation ac-
curacy to check for convergence. The DQN agents and
discriminator are both trained using the Adam optimizer,
with MSE and categorical cross-entropy as loss functions,
respectively. For each of these updates, we train for 5
epochs with a learning rate of 10−5 and a batch size of 1.
Our selection of hyperparameters was informed by prior
work [28].

While Brisket allows for an arbitrary number of
learned policies, for our evaluation we trained three
agents concurrently using this strategy. This small num-
ber was chosen to evaluate if diverse, effective strategies
could be learned without an additional step of “pruning”
a number of ineffective strategies. After 50 episodes with
100 rounds of gameplay in each episode, we converged,
reaching a discriminator test accuracy of 99.5%. This
took approximately 48 hours to run on a single machine
using an AMD Ryzen 5 3600x CPU and NVIDIA GeForce
1080 Ti GPU. This suggests Brisket may be accessible
to those without substantial computing power, such as
fighting game developers.

4.4. Fine-tuning
In the second step of our approach, each of the learned
policies are individually fine-tuned to a similar level of
difficulty. This is to ensure each of the policies is not
trivially easy, as we did not reward winning in the pre-
vious step. For each of these policies, we trained for an
additional 50 episodes, using the fine-tuning reward func-
tion 𝑅𝑓 defined previously. During this step, we lower
the learning rate to 10−6 and use a fixed 𝜖 of 0.05 in an
attempt to not drastically alter the pre-existing learned
behaviour of the policies. As in our diversity step, these

rounds are played against a random agent to learn the
most general strategies possible.

Between every episode we had the agent play 9 rounds
(3 matches of 3 rounds) against the random agent using
greedy action selection, recording the average reward
for these rounds. After 50 episodes with 100 rounds of
gameplay in each, our reward plateaued and we stopped
training. Finally, we selected the highest scoring episode
in terms of average reward as the final version of the
policy. This was to ensure we selected the most effective
version of each policy.

By running Brisket once, we created three diverse,
effective agents that utilize differing strategies to win
games. We named these agents “Combo,” “Rushdown,”
and “Sweeper” based on their behaviour, which is
overviewed in the Agent Descriptions section. The top
performing version of each agent came from fine-tuning
episodes 17, 6, and 20 respectively. We chose to only run
Brisket once as an initial test, and to avoid the possibility
of stumbling into a good set of agents by the law of large
numbers.

5. Evaluation
In this section we discuss the evaluation criteria and the
human-authored baseline we compare Brisket against.
Our goal is to create a set of multidimensionally difficult
agents of similar skill levels that exhibit distinct strate-
gies from one another. As such, we require another set
of agents to compare against, as well as methods for
measuring both capability and diversity of strategy.

As a baseline we used three DQN agents employing
hand-authored reward functions that were designed and
trained prior to our diversity-based approach. This was
to avoid any chance of the output agents from Brisket bi-
asing the design of the baseline reward functions. These
reward functions were designed with the intention of
eliciting desired, diverse behaviours while still optimiz-
ing for optimal play. We chose to compare against DQN
agents instead of other human-authored approaches such
as rules-based systems to make the comparison as bal-
anced as possible. Therefore, this comparison can be seen
as comparing Brisket against our own ability to create
diverse RL agents. We named these three agents “Ag-
gressive,” “Balanced,” and “Counter” after the behaviours
we intended for them to exhibit. The top performing
version of each agent came from episodes 76, 64, and
99 respectively. The training of these agents and their
reward functions are outlined in the Baseline DQN Train-
ing subsection, and their behaviours are summarized in
the Agent Descriptions section.

We performed two different evaluations comparing the
policies learned by Brisket to the baseline agents. The
first was a measurement of diversity across randomized



Table 1
The results of the diversity comparison across ten thousand random states. The “All” columns depicts the percentage of actions
taken in a state that were diverse from all other agents. Each cell represents the diversity between two specific agents. Combo,
Rushdown, and Sweeper are the agents learned by Brisket.

Combo Rushdown Sweeper Aggressive Balanced Counter All
Combo 0% 98.59% 99.12% 99.53% 96.23% 99.75% 93.59%
Rushdown 98.59% 0% 83.87% 99.04% 97.75% 98.74% 78.73%
Sweeper 99.12% 83.87% 0% 99.94% 99.74% 99.96% 82.69%
Aggressive 99.53% 99.04% 99.94% 0% 87.89% 94.73% 83.19%
Balance 96.23% 97.75% 99.74% 87.89% 0% 78.59% 62.40%
Counter 99.75% 98.74% 99.96% 94.73% 78.59% 0% 73.75%

Table 2
The results of the head-to-head round-robin tournament, listed by win - loss - tie from the perspective of the agent in each
row. Combo, Rushdown, and Sweeper are the agents learned by Brisket.

Combo Rushdown Sweeper Aggressive Balanced Counter Overall Record
Combo X 10 - 0 - 0 10 - 0 - 0 9 - 1 - 0 5 - 5 - 0 8 - 2 - 0 42 - 8 - 0
Rushdown 0 - 10 - 0 X 4 - 1 - 5 5 - 5 - 0 4 - 6 - 0 5 - 5 - 0 18 - 27 - 5
Sweeper 0 - 10 - 0 1 - 4 - 5 X 9 - 1 - 0 5 - 5 - 0 10 - 0 - 0 25 - 20 - 5
Aggressive 1 - 9 - 0 5 - 5 - 0 1 - 9 - 0 X 5 - 5 - 0 0 - 10 - 0 12 - 38 - 0
Balance 5 - 5 - 0 6 - 4 - 0 5 - 5 - 0 5 - 5 - 0 X 5 - 5 - 0 26 - 24 - 0
Counter 2 - 8 - 0 5 - 5 - 0 0 - 10 - 0 10 - 0 - 0 5 - 5 - 0 X 22 - 28 - 0

states. To accomplish this, we collected ten thousand
random states by pitting two random agents against each
other. We then queried each of our six agents to greedily
select the action they would take in each of these states,
and recorded their choices. We then looked at the per-
centage of states in which each agent chose a distinct
action compared to each other agent. This gives us a
notion of how diverse the actions of the agents were
relative to one another across a wide variety of states.

The second evaluation was a head-to-head round-
robin tournament in which each agent played 10 matches
against each other agent. We chose to run for only 10
matches as we found running additional games produced
consistent results. In half of these matches, each agent
started on the left side, and in the other half the right to
avoid giving any agent an unfair advantage. We recorded
the win-loss-tie records of each agent in every match-up,
as well as total records. This evaluation is intended to
measure the effectiveness of each set of agents in relation
to one another, as well as ensuring we are not sacrificing
effectiveness for diversity with Brisket. If Brisket pro-
duces more diverse strategies of a consistent difficulty,
this would represent strong evidence towards it being
able to achieve multidimensional difficulty.

5.1. Baseline DQN Training
In this subsection we discuss the training procedure for
our baseline DQN agents, along with their individual re-
ward functions. We kept as many parameters consistent
between Brisket and the baseline as possible while train-

ing. Each agent used the same architecture described
previously. We used the same training time, hyperpa-
rameters, and final policy selection as in Brisket. This
consistency was intended to reduce the factors affecting
the agent’s performance beyond the specific change of
the reward function.

The reward function for each agent includes the use
of 𝑇 (𝑠) as defined in Section 4.1 to reward agents for win-
ning or losing games, along with an existential penalty
of 𝑝 = 1 to keep agents from stalling or getting stuck
in “loops” of actions. We found experimentally that this
penalty was necessary to achieve reasonable behaviour
from each agent. These reward functions are as follows.

5.1.1. Aggressive Agent:

The “Aggressive” agent uses the reward function 𝑅𝑎 de-
signed to bias the agent’s behaviour towards hitting the
opponent above all else. 𝑅𝑎 is defined as

𝑅𝑎(𝑠, 𝑎) = 𝑇 (𝑠) ⋅ 1000 + 𝐴(𝑠) ⋅ 100 − 𝑝 (3)

where𝐴(𝑠) = 1 if the agent dealt damage to the opponent
in 𝑠, and 𝐴(𝑠) = 0 otherwise.

5.1.2. Balanced Agent:

The “Balanced” agent uses the reward function 𝑅𝑏 de-
signed to make the agent take into account both offense
and defense when making decisions. 𝑅𝑏 is defined as

𝑅𝑏(𝑠, 𝑎) = 𝑇 (𝑠) ⋅ 1000 + 𝐴(𝑠) ⋅ 100 − 𝐵(𝑠) ⋅ 50 − 𝑝 (4)



where𝐴(𝑠) is as above, and 𝐵(𝑠) = 1 if the agent was dealt
damage in 𝑠, and 𝐵(𝑠) = 0 otherwise. 𝐵(𝑠) is weighted
lower than 𝐴(𝑠), as we found experimentally that the
agent would get trapped in local maxima with equal
weighting.

5.1.3. Counter Agent:

The “Counter” agent uses the reward function 𝑅𝑐 de-
signed to bias the agent into “counter-attacking” the op-
ponent while they are in the middle of a move. 𝑅𝑐 is
defined as

𝑅𝑐(𝑠, 𝑎) = 𝑇 (𝑠) ⋅ 1000 + 𝐶(𝑠) ⋅ 100 − 𝑝 (5)

where 𝐶(𝑠) = 1 if the agent dealt damage to an opponent
that was mid-move in 𝑠, and 𝐶(𝑠) = 0 otherwise.

6. Agent Descriptions
Because we cannot realistically give all the policies for
each agent, in this sectionwe briefly describe each agent’s
behaviour from our perspective. We also provide a video
of the gameplay of each agent for additional context2.

Beginning with the learned diversity skills, Combo
is an agent characterized by its chaining of fast moves
together. The agent uses a wide variety of moves depend-
ing on the situation, and has learned a difficult-to-escape
combo that traps the opponent in the corner. Rushdown
is an agent which quickly approaches the opponent to re-
lentlessly attack. The agent frequently switches between
high and low attacks, making it difficult for an oppo-
nent to effectively block or defend themself. Sweeper
is an agent that chooses to use a low sweeping kick in
almost every circumstance. The agent has learned to ef-
fectively chain these sweeps together, keeping the enemy
permanently knocked down unless they correctly block
or evade the attack.

The three human-authored skills all converged to sim-
ilar maxima, with small distinctions between each pol-
icy. This maxima involves using a wide-reaching up-
percut move during the beginning of a round, followed
by throwing projectiles until the agent is out of energy
or the round is finished. The Aggressive agent is the
simplest form of this “uppercut” strategy, attempting to
chain uppercuts against the opponent without caring
for self-preservation. The Balanced agent occasionally
mixes up this base strategy with faster kicks, and has a
higher preference toward throwing projectiles than the
other human-authored agents. We hypothesize that this
is due to the notion of self-preservation in this agent’s
reward function. The Counter agent also tweaks this
base strategy by focusing more on uppercutting than

2https://www.youtube.com/watch?v=GnoURvbHMLY

throwing projectiles. Instead of using energy on throw-
ing projectiles, this agent performs a sliding kick move
that goes under most other moves, allowing the agent
to effectively “counter hit” the opponent mid-move as
desired by the design of its reward function.

7. Results
In this section we discuss the results of the action diver-
sity and head-to-head evaluations.

Table 1 compares the diversity between each agent’s
chosen actions across ten thousand random states. Over-
all, the agents learned by Brisket took actions that were
diverse from the entire population of agents more often
than the human-authored baseline agents. This suggests
the diversity-based agents are exhibiting more distinct
behaviours than the baseline agents. In particular, the
Combo agent exhibited the most diverse behaviour, se-
lecting actions that were diverse from the entire popu-
lation 93.59% of the time. We hypothesize this is due
to the high variety of moves used by the agent, as de-
scribed in Section 6. By comparison, the human-authored
agents took less diverse actions, which we hypothesize
is a result of the agents converging to similar local max-
ima despite the differences in their reward functions.
This may suggest a weakness in simultaneously opti-
mizing towards desired diverse behaviours and optimal
play, which Brisket subverts through its two-step pro-
cess. Notably, while the Aggressive agent outperforms
the Rushdown and Sweeper agents in total diversity, this
is primarily due to the differences between it and the
diversity-based agents. From our perspective, Brisket’s
agents are noticeably more distinct from one another
than the human-authored agents, which highlights the
difficulty of measuring human-subjective diversity with-
out human evaluation.

Table 2 depicts the results of the head-to-head tour-
nament between the six DQN agents. Overall, Brisket
outperformed the human-authored baseline in the tour-
nament, with cumulative records of 85 wins - 55 losses -
10 ties and 60 wins - 90 losses - 0 ties respectively across
both groups of agents. This performance is promising, as
it suggests that we did not sacrifice effectiveness for the
sake of diverse behaviour. The groups of agents showed a
similar degree of internal balance, with each having two
equally scoring agents, and one outlier. Notably, Combo
and Sweeper performed very similarly versus the human
agents despite being almost completely distinct from one
another in the diversity experiment. This is a promis-
ing sign toward our goal of attaining multidimensional
difficulty with Brisket.

https://www.youtube.com/watch?v=GnoURvbHMLY


8. Discussion
In this section we reflect upon our results, addressing
the limitations of our evaluation and system design and
discussing potential avenues for future work.

8.1. Limitations
The most notable limitation of our work is the lack of hu-
man evaluation. While the agents generated by Brisket
outperformed the baseline on our evaluation metrics, the
lack of human evaluationmakes it difficult to draw strong
conclusions about the quality or effectiveness of these
agents. In particular, the results of our diversity evalua-
tion highlight the difficulty in measuring something as
qualitative and subjective as diversity. As well, human
evaluation would be helpful for evaluating the robustness
of the learned agents, as there is a possibility the current
strategies may be brittle or ineffective against human
opponents. While human evaluation is outside the scope
of this paper, we feel it is a clear next step to guide future
development of Brisket.

As well, there are a number of limitations concerning
our evaluation & result. Both of the evaluations have rela-
tively small sample sizes, which could present a potential
source of bias. However, in both the case of the diversity
evaluation and head-to-head tournament, we found that
using additional samples yielded almost identical results.
As well, in this paper we only utilized Brisket to learn a
small number of agents due to computational constraints.
While Brisket may potentially be more effective with a
larger number of learned policies, we interpret our re-
sults as a positive sign that the system may be useful to
developers without substantial computing power.

8.2. Future Work
While in this paper we present one potential method for
creating agents that exhibit multidimensional difficulty,
there are other possible avenues for future exploration.
One such avenue could be the use of a state-based di-
versity metric in training which rewards agents based
on the diversity of game states each agents encounters.
This may yield more diverse behaviour than our current
action-based diversity metric, and the two could poten-
tially be used in tandem to create agents which drive
a match towards distinct states using disparate actions
from one another. As well, quality-diversity methods
could represent another solution to this problem, and
have yet to be applied in the domain of behaviour gener-
ation to our knowledge [13].

9. Conclusions
In this paper we presented Brisket, a diversity-based deep
RL approach with the goal of generating multidimen-
sionally difficult fighting game agents. We implemented
Brisket in FightingICE, generating three agents to com-
pare against a set of DQN agents using human-authored
reward functions. We found Brisket outperformed this
human-authored baseline in both diversity and effective-
ness. We hope Brisket can represent a preliminary step
towards multidimensional difficulty in games, and inspire
other work to explore the problem further.
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